

■ Motor and machine protection

Temperature monitoring with PTC-thermistors

- Basic information

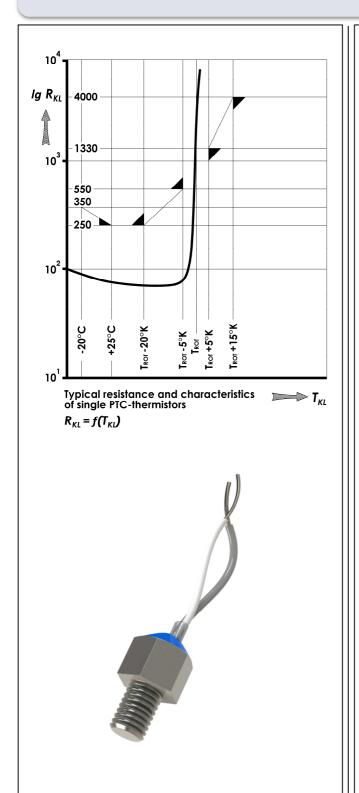
PTC thermistors are ceramic semi-conductors which because of the very high Positive Temperature Coefficient lend themselves to a variety of applications.

- Applications

Specially constructed versions of these products are available and this facility enables most applications to be catered for. Most typical application for PTC thermistors is to protect the windings of heavy duty motors and transformers.

- General function

The PTC thermistor, for the thermal protection of electrical machines, is a temperature dependent component. The rated operating temperature (ROT) corresponds to the curie point temperature of the ceramic. The resistance, of the PTC thermistor, rises very steeply with relatively small increases in temperature, thus triggering the switching function.


- Advantages

- Precise repeatability of the response point.
- Long hysteresis free switch cycle life.
- Extremely cost effective.
- Steep temperature-resistance curve characteristic allows for simple evaluation electronics.
- Current self-limiting.
- Light weight.
- Low thermal time constant.
- Extremely small designs are available.

■ Motor and machine protection

Temperature monitoring with PTC-thermistors

- Technical base data

Typical resistance-temperature characteristic

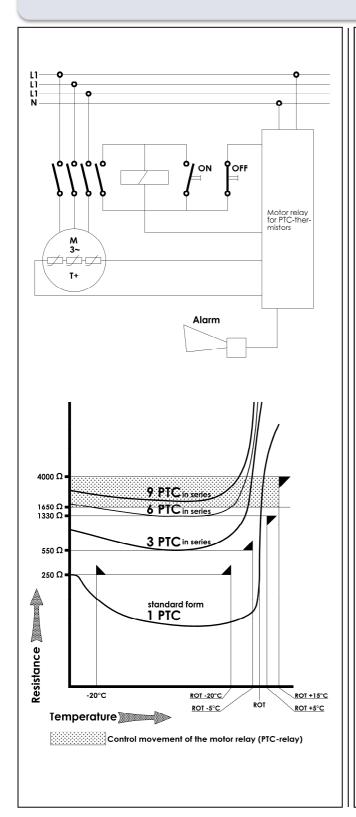
The advantage of PTC-thermistors is demonstrated by the very steep curve as shown in the graph. This graph shows the relationship between temperature and resistance. The characteristic of the curve demonstrates the accuracy of the PTC's. The increase in the resistance from the switching point onwards is exponential. The DIN-standards relevant to these products cover the temperature range from +60°C to +180°C and are DIN 44081 and 44082.

Resistance values (according to DIN 44081 and DIN 44082)

The resistance temperature characteristic of PTC-thermistors for the thermic protection of machines is defined by the following formula:

Temperature Range (T _{KL})	PTC-Resistance (R _{KL})	Measuring DC voltage U (test voltage)
-20°C to T _{ROT} -20K	R _{KL} <u><</u> 250 Ω	U <u><</u> 2,5 V
at T _{ROT} -5K	R _{KL} <u><</u> 550 Ω	U ≤ 2,5 V
at T _{ROT} +5K	$R_{KL} \ge 1330 \Omega$	U <u><</u> 2,5 V
at T _{ROT} +15K	$R_{KL} \ge 4000 \Omega$	U <u><</u> 7,5 V

Load must not be applied to the thermistors as this creates a self-heating effect.


At ambient temperature the resistance value of thermistors is normally between 50 Ω and 100 Ω . It can also be between 30 and 250 Ω . At ambient temperature the resistance values have no relevance to the serviceability (functionality) at the ROT (rated operating temperature).

The ROT of PTC-thermistors in the range of +60°C to +180°C progresses normally in steps of 10 K.

■ Motor and machine protection

Temperature monitoring with PTC-thermistors

Application-example for electric motor- and machine protection

The accurate sensitivity and small dimensions of PTC's makes them ideal for all electrical machine protection applications. For electric motor or transformer protection the PTC must be placed within the windings. The ROT (rated operating temperature) is chosen in relation to the insulation class of the windings. Three-phase motors will require 3 PTC-Thermistors, wired in series. The terminal leads of the PTC must be connected through a terminal block to a relay and cut-off device (Schütz). When the temperature of the motor exceeds ROT the relay is activated and triggers the power cut-off. When the temperature of the windings cools to below ROT the low resistance of the PTC-thermistor will allow the motor (transformer) to be re-started.

Control-relays suitable for use in conjunction with PTC's are produced by several manufacturers including SIEMENS 3UN6, SEVA-tec TMS 100 and TMS 200. But also all other standard control-relays can be used.

PTC-operational range for use with control relays for temperature protection

Control relays trip normally between 1650 Ω and 4000 Ω (according to DIN VDE 0660).

Switching points for 1, 3, 6 und 9 PTC-thermistors connected in series is shown in the diagram:

- 1 PTC switches no later than T_{ROT} +15 K, no earlier than T_{ROT} +5 K.
- 3 PTC switch no later than T_{ROT} +5 K, no earlier than T_{ROT} -5 K.
- \bullet 6 PTC switch no later than $T_{ROT},$ no earlier than T_{ROT} -20 K.
- 9 PTC at ambient temperature have a combined resistance value which is automatically within the switching boundaries of the control-relay.

■ Motor and machine protection

Temperature monitoring with PTC-thermistors

Mechanical and electrical qualities

characteristics	standard form	miniature form							
	K155, KZ 255, KD 355,G 155, GO 155	K135, KZ 235, KD 335,G 135, GO 135							
pellet diameter	approx. 3-3,5 mm	approx. 2-2,5 mm							
shrink tube	Kynar, ca. 15mm Kynar, ca. 11mm								
leads	stranded silvered copper wire insulated with Teflon (PTFE), AWG 24, or A								
	26 according to the manufactures choice.								
length									
single-sensor:	500 ± 10 mm								
twin-sensor:	500/180/500 ± 10 mm								
triple-sensor:	500/180-180/500 ± 10 mm								
colour code	colour coding is to DIN 44081 and 4408	82 see table on page 6							
endconnections	half plucked								
insulation strength	U <u>≥</u> 600 VAC								
lead resistance	at +20°C: AWG26= 133 Ω/km; AWG24=	= 82,7 Ω/km							
admissable working temperature	up to +200°C								
maximum working voltage									
model Siemens:	U _{max} = 30V DC								
model Philips:	U _{max} = 25V DC								
DC measuring voltage	U = 2,5V DC								
testing of insulation:	U _{eff} = 2500V AC								
wire against insulation									
(insulation strength)									
rated operating temperature T_{ROT}									
in 10K steps:	+60°C to +180°C								
in 5K steps:	+145°C, +155°C								
Tolerance Δ T _{ROT}									
ROT=+60°C to +160°C:	±5 K	± 5 K							
ROT=+170°C to +180°C:	± 6 K ± 7 K								
operational cut-off time	<5s <3s								
Climatic categories as stated in DIN	HFF:								
40040	lower category temperature: H = -25°C								
	upper category temperature: F = +180°C								
	humidity class F: average relative humidity = 75%, 95% continuously on 30								
	days per year, 85% occasionally on the remaining days, dew precipitation								
	inadmissible								
storage temperature	minimum: -25°C								
	maximum: +65°C								

■ Motor and machine protection

Temperature monitoring with PTC-thermistors

Mechanical and electrical qualities

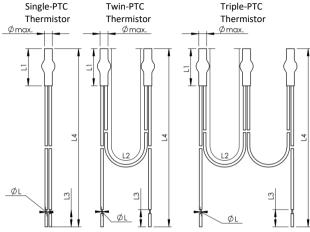
insulation class	The insulation class of machines suitable for protection with PTC's is graded according to VDE 0530 and this is demonstrated in the table below.										
	Insulating Y A E B F H							С			
	classified temperature limit	+90°C	+105°C	+120°C	+130°C	+155°C	+180°C	over +180°C			
insulation test	Before testing the leads of the sensors have to be connected electroconductively. The testing voltage is connected to the leads and the motor winding according to DIN 44081 and DIN VDE 0530.										
resistance test of the installed thermistors	Because of the self-heating effect a method to measure PTC-thermistors must be used in which the voltage drop per sensor is not greater than 2,5V DC. The measurement is to be done with a measuring bridge, e.g. Wheatstone. A reading of \leq 250 Ω per sensor indicates that the sensors and leads are correctly installed. When more than 1 sensor is wired in series the allowable resistance is in multiples of \leq 250 Ω .										
installation instruc- tions for electric motors	It is important that the sensors are inserted in the stator coils, nearest to the rotor before impregnating the windings. The sensors should be tested prior to the impregnation of the rotor, winding temperatures must not exceed 175°C for sensors with ROT 160°C or 185°C for sensors with ROT 170°C. If impregnating agents or impregnating varnishes are used, that are not chemically neutral, the resistivity of the sensors has to be tested by the user. The sensor must be inserted in the middle of the end coils, ensuring that they are completely surrounded by the windings. Hollow space and trapped air influence the heat transmission. One sensor must be inserted into each leg of the windings with the leads parallel to the coil conductors. The mounting of several sensors has to be done in series. The leads must be connected to a terminal block on the terminal board, to ensure that they are separate from the winding terminals. Tension and other mechanical stresses must be avoided when installing sensors. Please avoid loops in the leads to avoid possibly occurring interfering voltage.										

Quality control

Unless requested otherwise, quality control is to DIN 40080, AQL (acceptable quality level) in accordance with MIL-standard 105D and IEC 410 at the discretion of the manufacturer. Precise manufacturing and testing techniques guarantee the accuracy of SEVA-tec-PTC-thermistors. All manufacturing operations are designed to conform to DIN 44081 + 44082.

Special versions (e.g. longer leads) are quickly available on request.

Caution:


The lead ends of the PTC-thermistors must not be connected to a voltage larger than 2,5 V DC!

We recommend that a warning label be fixed to any apparatus where there is a possibility of more than 2,5 V DC being connected to the sensor. These warning labels may be purchased from SEVA-tec when required.

Motor and machine protection

Temperature monitoring with PTC-thermistors

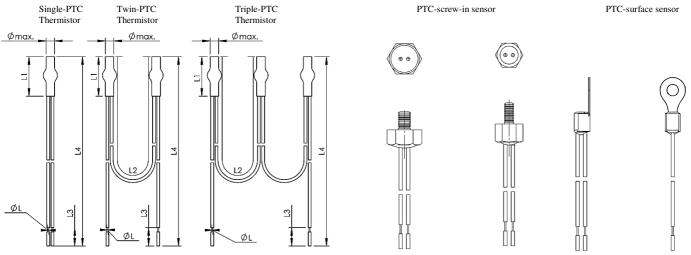
Technical information, color coding of leads and ordering codes for PTC thermistors:

Rated operating	Resistance R [Ω] 1)	Resistence R [tence R $[\Omega]^{1}$ at PTC-thermistor temperature:		color coding		order reference ²⁾				
Temperature ± Tolerance T _{ROT} ± ΔT _{ROT} [°C]	from -20°C to T _{ROT} -20K		$T_{ROT} + \Delta T_{ROT}$ $(U_{KL} \le 2,5 \text{ V})$	T _{ROT} + 15K (U _{KL} ≤ 7,5 V)	leads-in		single sensor	twin sensor	triple sensor	screw-in-sensor	surface sensor
60 ± 5	≤ 100	≤ 570	≥ 570	-	white	grey	31-K1x5	31-KZ2x5	31-KD3x5	31-G1x5	31-G01x5
70 ± 5		≤ 570	≥ 570	-	white	brown	41-K1x5	41-KZ2x5	41-KD3x5	41-G1x5	41-G01x5
80 ± 5		≤ 570	≥ 570	-	white	white	51-K1x5	51-KZ2x5	51-KD3x5	51-G1x5	51-G01x5
90 ± 5		≤ 550	≥ 1330	≥ 4000	green	green	61-K1x5	61-KZ2x5	61-KD3x5	61-G1x5	61-G01x5
100 ± 5		≤ 550	≥ 1330	≥ 4000	red	red	71-K1x5	71-KZ2x5	71-KD3x5	71-G1x5	71-G01x5
110 ± 5		≤ 550	≥ 1330	≥ 4000	brown	brown	81-K1x5	81-KZ2x5	81-KD3x5	81-G1x5	81-G01x5
120 ± 5		≤ 550	≥ 1330	≥ 4000	grey	grey	91-K1x5	91-KZ2x5	91-KD3x5	91-G1x5	91-G01x5
130 ± 5		≤ 550	≥ 1330	≥ 4000	blue	blue	101-K1x5	101-KZ2x5	101-KD3x5	101-G1x5	101-G01x5
140 ± 5		≤ 550	≥ 1330	≥ 4000	white	blue	111-K1x5	111-KZ2x5	111-KD3x5	111-G1x5	111-G01x5
145 ± 5		≤ 550	≥ 1330	≥ 4000	white	black	116-K1x5	116-KZ2x5	116-KD3x5	116-G1x5	116-GO1x5
150 ± 5		≤ 550	≥ 1330	≥ 4000	black	black	121-K1x5	121-KZ2x5	121-KD3x5	121-G1x5	121-G01x5
155 ± 5		≤ 550	≥ 1330	≥ 4000	blue	black	126-K1x5	126-KZ2x5	126-KD3x5	126-G1x5	126-G01x5
160 ± 5		≤ 550	≥ 1330	≥ 4000	blue	red	131-K1x5	131-KZ2x5	131-KD3x5	131-G1x5	131-G01x5
170 ± 7		≤ 570	≥ 570	-	white	green	141-K1x5	141-KZ2x5	141-KD3x5	141-G1x5	141-G01x5
180 ± 7		≤ 570	≥ 570	-	white	red	151-K1x5	151-KZ2x5	151-KD3x5	151-G1x5	151-G01x5
190 ± 7 3)		≤ 570	≥ 570	-	-	-	-	-	-	-	-
200 ± 7 3)		≤ 570	≥ 570	-	-	-	-	-	-	-	-
210 ± 7 3)		≤ 570	≥ 570	-	-	-	-	-	-	-	-

Legend:

- 1. Resistance value is given for single PTC-thermistors, the value is to be multiplied for twin, triple and multiple sets.
- 2. Please replace the "x" in the order reference: for the standard-PTC-form by "5", for the miniature-PTC-form by "3".
- 3. The sensor types ROT 190°C, 200°C and 210°C did not meet the standard DIN 44081 and DIN 44082 and thus are not subordinated to the standardized characteristic curves and the color coding.

■ Motor and machine protection

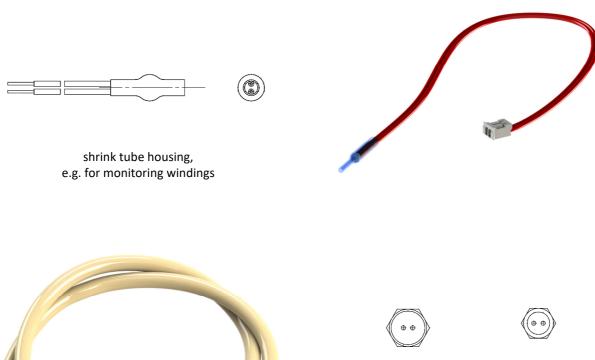

Temperature monitoring with PTC-thermistors

Example models:

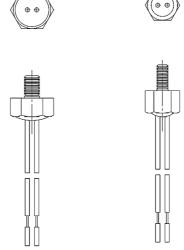
PTC-model	odel dimensions: other design and change of length of leads (L4)										
	according to customer's requirements										
	L1 [mm] L2 [mm] / colour L3 [mm] L4 [mm] Ømax. [mm] ØL [mm] (according to choice of producer)										
standard	15	180 / black	10	520	3,5	0,42 / 0,54					
mini	11	180 / yellow	10	520	2,5	0,42 / 0,54					

Electric motor- and machine protection to DIN 44081 und DIN 44082

PTC-thermistors for measurements and control 30V Twin-PTC

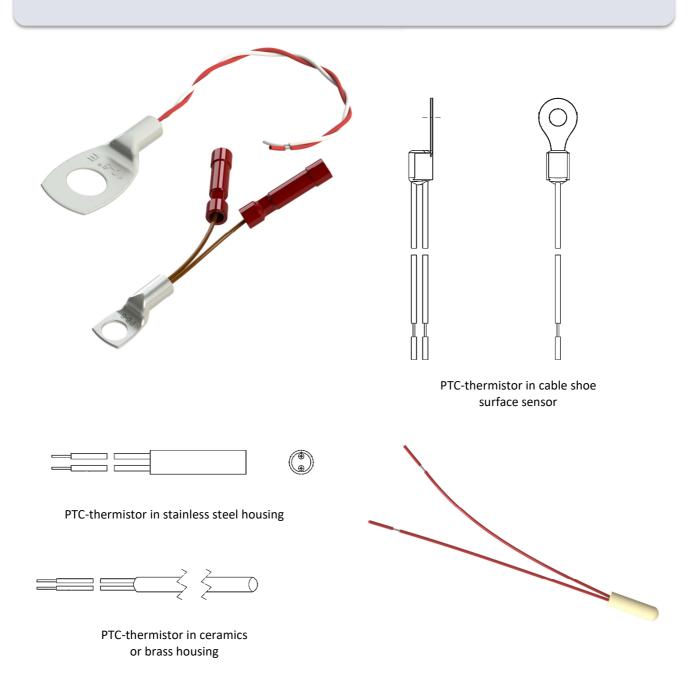


■ Motor and machine protection


Temperature monitoring with PTC-thermistors

- PTC-sensors

examples of PTC-thermistor-housings



screw-in-sensors in alu housing: AL-M3/SW8 and AL-M4/SW10

Motor and machine protection

Temperature monitoring with PTC-thermistors

Responsibility:

No responsibility will be accepted for thermistors which have not been installed and tested according to the relevant standards as previously listed in our data sheet.

Due to the ongoing research and development program, product specification may be subject to change, at the manufacturers discretion.

For further advice and information contact: